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We studied the effect of using a nonorthogonal grid coordinate system and a finite-
volume approach in the simulation of decaying isotropic turbulence. Calculations
were performed in distorted periodic cubic boxes and with a turbulent Reynolds
number, based on the Taylor microscale and on a root mean square turbulent velocity,
of approximately 40. A preliminary study showed that in the nonorthogonal grids
some Fourier modes of the discretized derivatives can have greater amplitude or the
phase inverted relatively to the modes of the exact derivative, contrary to what occurs
with a Cartesian grid system. However, in the simulations, the statistical distributions
of velocity, pressure, and longitudinal and lateral velocity derivatives were always
identical, regardless of the grid distortion. The temporal evolution of the energy
was also similar and the differences at the end of the simulations (after about two
eddy turnover times) did not exceed 1%. Furthermore, the grid nonorthogonality
affected neither the isotropy of the fields nor the correlation between the vorticity
and the principal rates of strain. We concluded that the finite-volume approach in
nonorthogonal grid systems may be used in the numerical simulation of complex
turbulent flows with either the direct numerical simulation or large-eddy simulation
methodologies. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Direct numerical simulation (DNS) of turbulence is a major tool for fundamental studi
and development or validation of turbulence closure theories [16, 20]. The work of Ors:
and Patterson [18], on decaying isotropic turbulence, with turbulent Reynolds number be
on the Taylor microscaleRg,) of approximately 40, is usually referred to as the first DNS
study. Siggia [24] studies stationary forced turbulerRe, (~ 100) with a subgrid like
parametrization and reveals the existence of long and thin tubes of high vorticity. Kerr [:
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studies high-order derivative correlations and the alignment between the principal rate
strain and the vorticity tubes. He concludes that the derivative correlations do not obey
scaling laws predicted by statistical models of intermittency and that the largest princi
rate of strain is compressive and aligned perpendicularly to the vorticity tubes. Vincent ¢
Meneguzzi [26] investigate the vorticity tubes and the statistics of velocity derivatives 1
Re ~ 150, whereas the main interest oéhis and Lesieur [15] is on the decaying of stably
stratified turbulence. Jiemiezet al.[8] and Jiménez and Wray [7] study the dimensions and
the velocity of the vorticity tubes, for 4@ Reg, < 160. All these studies use a uniform
Cartesian mesh and pseudospectral methods, a combination usually considered to giv
most accurate results for the computer resources available.

As computer performance increases and one realizes the limitations of closure thec
based on Reynolds averaging Navier—Stokes (RaNS), the use of DNS and large-eddy sin
tions (LES) in real engineering applications has become more appealing (see, for insta
Ref. [1]). However, real engineering applications require coordinate systems with hi
geometric flexibility, which precludes the utilization of either uniform Cartesian mesh
or pseudospectral methods, and requires techniques which are still relatively uncomi
to the DNS/LES community (finite differences, finite element, etc.). Because in terms
numerical accuracy DNS and LES are more demanding than RaNS-based codes, a
sistent analysis of numerical errors introduced by the utilization of different techniques
needed.

A simple choice, which some works have pursued, is to test the techniques of the el
neering applications in basic turbulent flows. Rai and Moin [19], for instance, suggest
utilization of a fourth-order-accurate method to obtain results with the same accuracy ¢
pseudospectral method in the DNS of a channel flow. Ghosal [5] presents results of isotr
turbulence and analyzes the relative magnitude of the subgrid stresses and truncatior
aliasing errors. Kravchenko and Moin [13] consider the flow inside a channel; they find tl
the errors can be of the same order as the subgrid stresses, that truncation errors are
important for low-order methods, and that aliasing errors are more important for high-ort
or spectral methods. Kaltenbach [10] studies the influence in the anisotropy of the resol
and subgrid stresses of an anisotropic filter, a consequence of the utilization of a grid v
different spaces in each direction. He concludes that the effect depends on parameter:
the grid anisotropy, the resolved scales, and the energy spectra shape near the small res
scales.

The major goal of our work was to study the suitability of a nonorthogonal mesh in terr
of both spatial and temporal accuracy. This was a first step in the development of comp
codes based on either the DNS or LES methodologies for flow simulation in compl
geometries [9]. As a test case for our study we selected the decay of three-dimensi
isotropic turbulence. We considered the same case as did Orszag and Patterson [18
in a distorted domain. Despite being almost 30 years old, this study’s simplicity made
the most appealing in the context of our work, since we were interested only in the me
parameters of isotropic turbulence. The decaying (nonstationary) isotropic turbulence
preferred to stationary turbulence because the forcing mechanism could be avoided.

The following text is divided into three sections. In Section 2 we present the mathemati
model, the numerical techniques, and the procedure that we followed to generate the ir
fields. An analysis of the errors of the discretized derivatives, the results of the simulatic
and the corresponding discussion are presented in Section 3. Section 4 concludes the &
and summarizes our main conclusions.
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2. MODEL

2.1. Mathematical Model

The continuity equation,

apU;
X%

=0, (1)

and the Navier—Stokes equation,

8,0Ui 8(,0Ujui) . 81’” _ %
at 0X; 0Xj i’

)

were discretized using the finite-volume approach in a nonorthogonal and nonstagg:
grid, second-order central differences for spatial discretization, and a third-order Run
Kutta scheme for time discretization. In Egs. (1) andy2pare the velocity components
along the coordinates, p is the pressurey is the fluid densityt is the time, and;; are
the stress tensor components.

The continuity equation (1) integrated over the control volume

/ 9PU 4o — 0, 3)

8Xi

Q

according to Gauss’ divergence theorem yields
/pv-ndS=Z/pV-ndS=Zr‘h|, l=ew,ns,.... (4)
s | i
S

In our nomenclature (cf. Ref. [4]y is the velocity vectorn is the unit vector normal to

surfacesS, the subscript stands for each of the six faces of the control volume (identifie

as east, west, north, south, top, and bottom),ranigd the mass flux across each face.
The Navier—Stokes equation (2) in finite-volume formulation is

% pU; dQ+/puiv~ndS=/tijij-ndS—/pii~ndS, (5)
Q S S S

whereij is the coordinate vector along directiaf. The discretization of the convective
termis

/puiv.ndS=Z/puiv-ndS=ZFfj, l=ew,n,s,.... (6)
S | 5 |

The convective flux across the east surface, for instance, is given by

R = /,ouiv- NdS~ meli e,
S

where the velocity at the face of the control volurogd) is obtained by linear interpolation.



716 SILVA LOPES AND PALMA
The discretization of the diffusive term is
/njij -ndS= Z/Tiji,» ndS=>» Fi, I=ewns.... @)
S | S |
The diffusive flux across the east fadéfe, is defined by

Fifje: /‘L’ijij -ndS~ (‘L’ij)eSé.
S

To calculate the stresses we used a local coordinate transformation, defixge=by
Xi(€;), ] = 1,2, 3 and characterized by the Jacobikn

& dn 0¢

axi> ay dy ady
J=detl — | =| = — —|. 8
<3éj 9§ dn ¢ ®)

dz 09z 0z

aE  dn  oC

Using this transformation, the derivatives of any variapleith respect to the Cartesian
directions were calculated using

99 _ 99 05 _ 99 B

aX%; - 8%’] aX%; - 3%’] J’ (9)

wherep'l is the cofactor obx; /9 in the Jacobian). S, the surface vector of the control
volume, is defined at the east face by

Se=Sn=Si+ ¥j+ Sk,
where each component can be written as a function of the cofagitors
& =BtAnAs, = pIAsAc, and § = pAgA.

Under these conditions and for a Newtonian fluid, the stress tensor components at
east face and for the velocity, for instance, are the
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where the derivatives at the face of the control volusge/§n ands¢ /5¢) are obtained by
linear interpolation of the derivatives at the center.
Finally, the discretization of the pressure gradient term yields

Qipz—/pii-ndSN—ZnS, | =ew,n,s,..., (10)
L i

where the pressure at the faces of the control volume is obtained also by linear interpola

The set of equations above describes the fluid flow equations (1) and (2) as impleme
in our computer code. Because no explicit subgrid model was used, our calculations
classified as DNS.

2.2. Numerical Techniques

To solve Egs. (1) and (2) we used a semi-implicit algorithm based on the fractional s
method of Kim and Moin [12], which comprised the time integration of the momentul
equation (step 1) and the implicit solution of a Poisson equation for the pressure, to guara
a divergence-free velocity field (step 2).

After spatial discretization, followed by time discretization, Eq. (2) reads

th+1 T .
(o™= oy = [ {—8(‘;“)(1]“) + ‘;’X: . )
The integral was solved by the Runge-Kutta (4,3) scheme (see Appendix or Ref. [3]
further details). Our choice of the Runge-Kutta (4,3) scheme for temporal discretization v
based on the results of a preliminary study [25], using five different alternative schemes
temporal discretization. Again, using the east face as an example, the mass flow rate
step 1 was found using

mzn+1 — Pez (ui*n+1) esé’
i

where the overscore indicates an interpolation over nédasd E and the asterisk refers
to a velocity field that may violate mass conservation.

The objective of step 2 of the algorithm is to correct the velocity ﬁé[ﬁl in such away
that mass conservation is satisfied at each control volume. This is achieved via a pres
field obtained by solution of the Poisson equation

Spnt
|Z pAtS 5%

1

=> m™ I=ewns.... (12)
|

which was solved using a mixed spectral/Gaussian elimination solver.
After, the velocities are corrected using

5pn+l
(pu)™* = (U™ — At———
8%
and the mass flux at the east face, for instance, is corrected using

ml’H—l _ m*n+l A i 8pn+l
e =My " — peAt Z S . (13)
i e

X
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This procedure of calculating the mass flux was originally proposed by Rhie and Chow [
for orthogonal collocated grids. Though avoiding the occurrence of oscillations in t
pressure, it yields a loss of conservation of kinetic energy proportional to the cell surf
area and of ordeAt - A (A is the mesh spacing). (For a more detailed analysis on th
aspect, see, for instance, Refs. [4, 17]). This disadvantage of collocated grids comp:
with staggered grids is not enough to preclude their use. Because they enable a sin
treatment, collocated grids are usually preferred in the case of nonorthogonal coordi
systems and complex geometries, even for large-eddy simulations (e.g., Refs. [2, 27]).

3. RESULTS AND DISCUSSION

This section, which presents and discusses the results, is divided into five subsections
section begins with a description of the test conditions (Section 3.1). The effects of the ¢
nonorthogonality on the discretized derivative with respectto the Cartesian direeiging
a second- or a fourth-order centered finite-difference scheme are analyzed in Section
Because the effect of the nonorthogonal terms could influence different aspects of the f
the results were analyzed at the beginning and at the end of the simulations (Section:
and 3.5). Section 3.4 focuses on the temporal evolution of the statistical parameters du
two eddy turnover times.

3.1. Test Conditions

The physical domain of the reference case (orthogonal) was a periodic cubic box of <
length¢ = = cm, which was discretized by meshes wit? @&hd 128 grid points. It is
generally accepted (e.g., Refs. [6, 18]) that the accuracy of finite-difference calculation
comparable to spectral calculation with half the number of nodes along each direction.
time step (t) of the temporal discretization was 0.004 and 0.002 s, féaéui 128 grids,
respectively. The kinematic viscosity was= 0.01189 cm/s, as in Orszag and Patterson
[18], leading to a Reynolds number based on the Taylor micros€de=£ vymsh/v) of
approximately 40.

To study nonorthogonality effects, calculations were also performed in distorted cul
boxes, where the computational directigrendn were coincident with the physical direc-
tionsx andy. The anglex, between the physical directiarand the computational direction
¢, was varied between 0 and*%4n steps of 15, in thexz Cartesian plane (Fig. 1). In this
case, the tensgt/J was

1 00
1
% = A 0 1 0f, (14)
—tanae 0 1

whereA = ¢/N is the mesh space in the orthogonal domain, Wtheing the number of
nodes in each direction. The volume of the domains with inclined boundaries was the s:
as the original because no other distortion was applied. Periodic boundary conditions
still applied in the Cartesian directions. The orthogonal domain and the domain with a :
angle betweer and¢ are shown in Fig. 2. Note that although in mathematical terms onl
one direction was affected, during the course of the calculations other directions could
be affected. The direction of our choice was irrelevant given the turbulence isotropy &
the lack of mean shear.
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FIG. 1. Control volume in grids with angles of @nda betweerz and¢.

The initial flow field was an isotropic Gaussian centered (zero mean) random ensen
with the energy spectrum

E(k) = Ak*exp(—Bk?), (15)

wherek is the wave numbe® and B were chosen so thgtE (k) dk = 3/2 (cm/s§ and the
maximum of E (k) occurred akp, = 294 cm .

In the orthogonal grid, the initial fields were generated using the methodology descril
in Ref. [22]. The same methodology was also used for the nonorthogonal grids, but with
enforcing continuity during the construction in the wave number space. For each w

SR

A

N

FIG. 2. Physical domains with 0 and 3@ngles betweernand¢.
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number vector
2
hmm=T%me,Lmn:-NQ“wQ“”NQ—L

there is a Fourier mod& ,, , = 0" (k| mn). The velocity field in the Cartesian spagg , =
u*(x; j k) is obtained by the inverse transform

ui*.j,k = Z al*,m,n exp(i klﬁm,n 'Xi,j,k)~ (16)
I,m,n
The grid node locations are given by

oo LG ONFL (0 NIy N4L N
I,],k - N 2 aa J 2 ’ 2 9

i,jk,=1,...,N. (17)

The continuity was enforced only after the transformation to the physical spacg (§¢he
velocity field immediately after the transformation, which only satisfies continuity after tt
correctionu = u* — V¢, whereg is the solution of the Poisson equati®g = V - u*).

For every domain (or distortion) three computer simulations were performed withthe €
grid and one run with the 138&yrid. The three computer simulations differed only by the
seed of the random-number generator and the same seeds were used in all domains, in
to obtain identical initial fields. All calculations were done on single precision (four-byt
length for a real), because tests done on double precision (eight-byte length for a real)
not show any significant difference.

3.2. Influence of the Grid Nonorthogonality on the Discretized Derivatives
Consider the Fourier series of a generic variahle

dijk= Z 1mn XPI K mn - Xi,j k),

I,m,n

wherex; j i are the grid points.
The Fourier series for the derivatige)/9dz is given by

(%) = Z iI(zqgl,m,n exp(ik mn - Xi,j.k)-
ik

0z
I,m,n

However, when the derivatives are discretized, this expansion is obtained only if a spec
method is used. To study the effect of the discretization by finite differences in a nonorth
onal mesh, we defined

— (Sg/\az)l,m,n
(85/\az)l,m,n ’

the ratio between the Fourier modes of the derivative discretized by finite differ(eSﬂchéx)
and the modes of the exact derivative(9z). If Q < 0, the Fourier modes of the discretized
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derivative are in opposite phase to the Fourier modes of the exact derivative. Depen
on whetheQ| < 1 or|Q| > 1, the amplitude of the Fourier modes of the exact derivativ
is reduced or increased by the finite-difference discretization. For higher accuracy of
finite-difference discretizatiorQ should be close to 1.

The dependency d on the wave number was studied for grid distortions of 0 (orthogc
nal), 15, 30, and 45for either second- or fourth-order-accurate central difference schem
However, the actual calculations were all done with a second-order-accurate scheme.

3.2.1. Second-Order-Accurate Finite Central Differences

It follows from the mathematical model presented in Section 2 that the discretization
d¢/dzinvolves the discretization df¢/0& anddg/d¢:

3¢ Div1jk — Pi—1jk

0N _ Pirrik—di-1ik 18
<5§>i,j,k 2 (18)

3¢ i,ik+1— Pi j k-1

b - =LA LR 19
<5§>i,j,k 2 (19)

Equations (18) and (19) are second-order approximations and we consideredv¢ = 1.
Using the translation property of the Fourier series and becausééexpexp(—if) =
2i sing, the Fourier series for these derivatives are

8 o - :
(¢) = > i SiN(kxA)r.mn XK mn - Xi.j k),
8& ik 1 mn

é .. ~ .
<¢> = Z i SiN(K, A) @1 m.n €XPG K mon -+ Xij.k),
8¢ Lk 1 mn

where
k/Z == kx tana + kz.

After the coordinate transformation (9), the series for the discretized derivative with resp
to the Cartesian directionis obtained:

8¢) . sin(k,A) — sin(kyA) tana -
— = i
( ik Z

57 A 1mn €XPA K mn - Xi jk)- (20)

I,m,n

Whena # 0, apart fromk,, (20) depends also dg and tarw. Note that in a more general
case every derivative would depend on all wave numbers and angles between the Cart
(X, y, andz) and the computational directions, {;, and¢).

Defining the maximum wave number on a grid with mesh spagitig,ax = 7/A) and
normalizing the wave numbers

ki = (21)

: (22)
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FIG. 3. Ratio (Q,) between the amplitudes of the Fourier modes of the discretized derivative (using secol
order central differences) and the amplitudes of the Fourier modes of the exact derivative on the orthogonal r
(¢ = 0°), as a function of the normalized wave number.

Q,, the ratio between the Fourier modes of the discretized and the Fourier modes of
exact derivative for a second-order-accuracy finite-difference scheme, is given by

sin(k¥'z) — sin(k}m) tana
Q2= e
Z7T

: (23)

wherek}’ = K} tane + k% andk}, kI € [—1, 1[.

In case of an orthogonal grid (= 0°), Q2 is afunction ok} only and varies as illustrated
in Fig. 3. The result is by no means surprising, though in a graphical representation differ
from that used by, for instance, Refs. [13, 14]. Figure 3 shows the difficulty of the finit
difference scheme in resolving the higher wave numbers and the improved accuracy a:
wave number approaches zero (g approaches 1).

For anonorthogonal mest & 0), becaus€)- is a function of bottk} andk, we decided
to display this two-variable function as a contour map (Fig. 4). Contrary to the orthogot
case,Q; could be negative on any of the nonorthogonal grids. def 15 and 30, Q,
was not limited and continuous whég # 0 andk} = 0 (Figs. 4a and 4b). Under these
conditions,Q, tends to positive or negative infinite values, depending on the algebraic si
of k¥ and on whethek} — 0" or k! — 0~. Wheno = 45°, because tam = 1, Q, was
continuous and limited (Fig. 4c).

Figures 3 and 4 shoWQ, as a continuous function of one or two of the component:
of the wave number vector. It is also important to know how the discrete set of simulat
modes in a given grid are affected. Figures 5 and 6 show the minimum, average,
maximum values oY, in the two grids used in the simulations (with%dnd with 128
grid nodes), functions of the wave number vector length. The gain of accuracy obtainec
doubling the number of grid nodes in each direction is visible by comparing the minimul
average, and maximum values@$ for k < 64 in the two grids. Due to the discontinuity
in Q2 whenk} # 0, k; =0, ande = 15 or 30, the minimum and maximum values for
o = 15 and 30 were much greater than for = 0 or 45 and they could be greater in
the grid with 128 nodes than in the grid with 84nodes. The average value, however,
was less affected by the grid distortion: it was about 0.6 for the highest wave number:
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y.;..-v'1.0
K(b)

FIG. 4. Ratio (Q.) between the amplitudes of the Fourier modes of the discretized derivative (using secol
order central differences) and the amplitudes of the Fourier modes of the exact derivative, as a function o
normalized wave number. (&)= 15’; (b) « = 30; (¢) ¢ = 45.

the Cartesian grid and decreased with increasing grid distortion, until it reaehédor
oa =45,
3.2.2. Fourth-Order-Accurate Finite Central Differences

In the case of fourth-order-accurate scheme finite central differences, the derivati
d¢/0& anddg/d¢ are given by

5¢ ik + 8Piisik — 8Lk + P2k (24)
8 )ik 12 ’

<5_¢ _ —¢ijkr2+ 80 j k1 — Bdijk-1+ i k2 (25)
§C - 12 ’

Using the translation property of the Fourier series, and becaugegexpexp(—if) =
2i sind and expi0) + exp(—if) = 2 cosv, the Fourier series for derivatives (24) and (25)
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FIG. 5. Minimum, average, and maximum rati®Qf) between the amplitudes of the Fourier modes of the
discretized derivative in the grid with 84rid nodes (using second-order central differences) and the amplitudes:
the Fourier modes of the exact derivative, as a function of the wave number vector length: () (b) ¢ = 15;

(c) @ = 30; (d) « = 45°. Note that the vertical scales in (a) and (d) are different from those in (b) and (c).

are

(8_¢> = Z [ M[“' - COSkXA)]qumﬂ EX[ZXi kI,m,n . Xi.j,k)v
3& ik 1 mn 3

<8¢> = Z [ M[‘l - Coqk;A)]‘ﬁl,m,n exp(i ki mn - Xi,j.k)-
8¢ ik L mn 3

The Fourier series for the derivative with respect to the Cartesian diretiagiven by

8¢ _ . [ sin(k,A) ,
(&)i,j,k = .,;,nl {SA [4 — cogk,A)]
B sin(kyA)

3A [4 - COS(kxA)] tana} qsl,m,n eXIO(i kI,m,n : Xi,j,k)~

Using the wave number normalization (21) and (22), the r&iobetween the Fourier
modes of the discretized and the exact derivative is

_sin(ky'm)[4 — cogk;'m)] — sin(kim)[4 — cogkim)]tana
B 3Kk ’

Q4 (26)

Figure 7 shows this relation for an orthogonal mesh which, when compared with Fig.
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FIG. 6. Minimum, average, and maximum ratiQf) between the amplitudes of the Fourier modes of the
discretized derivative in the grid with 128rid nodes (using second-order central differences) and the ampl
tudes of the Fourier modes of the exact derivative, as a function of the wave number vector lengts. @)

(b) « = 15; (c) @ = 30°; (d) @ = 45°. Note that the vertical scales in (a) and (d) are different from those ir
(b) and (c).
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FIG. 7. Ratio (Q4) between the amplitudes of the Fourier modes of the discretized derivative (using fourt
order central differences) and the amplitudes of the Fourier modes of the exact derivative on the orthogonal 1
(x = 0°), as a function of the normalized wave number.
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FIG. 8. Ratio (Q4) between the amplitudes of the Fourier modes of the discretized derivative (using fourt
order central differences) and the amplitudes of the Fourier modes of the exact derivative, as a function of
normalized wave number. (&)= 15°; (b) « = 30; (¢) ¢ = 45°.

shows a wider range &€, for which Q, stays close to 1. Lele [14] quantifies the reso-
lution characteristics of various finite-difference schemes and shows th@t £00.9, 25

or 44% of the wave number range is well resolved for a second- or a fourth-orc
scheme.

On the nonorthogonal meshes, the contour shap&3,afFig. 8) were similar toQ,
(Fig. 4); however, the area covered by the conditioi5G Q4 < 1and Q4| > 1waslarger
compared with the second-order scheme. If the enlargeme®&0Q < 1 improves the
accuracy, the enlargement || > 1 degrades it. However, because no simulations wer
made using the fourth-order scheme, we could not say which one was the prevailing eff
Asin case 0fQ,, fora = 15 or 30, Q4 was not limited and was discontinuous when# 0
andk; = 0.

It is expected that, with a fourth-order scheme, the grid refinement also improves
accuracy of the results. However, that is not certain in the case-0#85° (Fig. 8). For
instance, a mode witk = k¥ = 0.9 whereQ, = —0.4 after grid refinement such that
k¥ = k¥ = 0.6 hasQ, = —1.2 and the global accuracy may or may not improve.
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3.3. Initial Fields

Because the procedure that we used to generate the initial fields (see Section 3.1)
never been applied to nonorthogonal grids, we first investigated whether the initial fie
were identical and had the intended characteristics of isotropy and Gaussian distribu
regardless of the grid distortion. For isotropy indicators, we used the distribution of fl
tuations of velocity and vorticity between the three Cartesian components (related to
isotropy of the large and small scales, respectively) and the isotropic relation

(@?)

ey - @)

where the operatdr - -) denotes an ensemble averages the vorticity,sj = 1/2(du;j /0x; +

du; /3x;) is the rate of strain tensor, andsf{ = > s; s;i . These parameters are displayed
in Table |: three simulations with the &4rid for each domain distortion and one with the
128 grid (see Section 3.1).

The distribution of the velocity or vorticity fluctuations between the three Cartesic
components was not affected by the grid distortion (Table I). The small variations betw
identical runs in domains with different distortion were not significant and were attribut
to numerical discretization.

In the orthogonal and in the 18omains, the isotropic relation (27) was satisfied up t
the third decimal figure (i.e. within less than 0.05%). There was a tendency to lose isotr
with greater distortions, due to the correction to satisfy continuity, but the maximum eri
was only 0.15%. Note that this tendency did not exist with the finer grid.

The statistical distributions of the velocity and its longitudinal and lateral derivative
(0u/ax andau/ay) were studied using their probability density functions (PDFs). The

TABLE |
Isotropy of the Fields att =0's

£(z,¢) (u?)/ % u?) (@f) /% (?) (@) /(tr(s)
64° grid nodes
0° 0.334,0.292,0.373 0.353, 0.323, 0.323 2.000
0.328, 0.308, 0.365 0.334, 0.341, 0.325 2.000
0.308, 0.283, 0.409 0.366, 0.352, 0.281 2.000
15 0.334,0.292,0.373 0.353, 0.323, 0.324 2.000
0.327, 0.308, 0.365 0.334, 0.341, 0.325 2.000
0.308, 0.283, 0.410 0.367, 0.352, 0.282 2.000
30 0.334,0.292,0.373 0.353, 0.323, 0.324 2.000
0.327, 0.308, 0.365 0.334, 0.340, 0.326 1.999
0.308, 0.283, 0.410 0.366, 0.352, 0.282 2.000
45 0.334,0.292,0.373 0.352, 0.322, 0.326 1.998
0.327, 0.307, 0.366 0.333, 0.340, 0.327 1.997
0.307,0.282,0.411 0.366, 0.351, 0.283 1.998
128 grid nodes
0° 0.323, 0.321, 0.356 0.358, 0.290, 0.353 2.000
15 0.323, 0.321, 0.356 0.358, 0.290, 0.353 2.000
30 0.323, 0.321, 0.356 0.358, 0.290, 0.353 2.000
45 0.323, 0.321, 0.356 0.358, 0.289, 0.353 2.000

Note Each line corresponds to one simulation.
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FIG. 9. PDF of the normalized velocity field at= 0 s (64 grid nodes), shown together with a Gaussian
distribution.

should be near Gaussian, as a consequence of the procedure that we used to gener:
initial fields. The statistical distributions were determined based on the assumption t
the fields were isotropic. This enabled us to increase the sample size, using, for insta
the three velocity components v, andw, for calculating the PDF ad.

The statistical distribution of the initial velocity field (Fig. 9) and velocity derivatives
(Fig. 10) were near Gaussian and did not show any influence from the grid distortion. T
results were identical despite the various distortions tested and collapsed to a single
Because the same holds in the case of the grid witR h@8es, the figures are not included
here.

Figure 11 shows that there was a good agreement between the calculated values
the theoretical dissipation specti(k) = 2v Ak® exp(—Bk?), as derived from the energy
spectra (15).

We also looked at the eigenvalues of the rate of strain teqjg@r, 1,2, andis). Continuity
impliesthat,; + A, + A3 = 0. If A1 isthe lowest and always negative andhe greatestand

10°¢ (()}oaussian (a) 10% "
[l — ﬁg 107
h‘ 10_2 [ o 450 102
Q
0%k ol
10*F ol
.5 1 1 L J .5 , , I I
10_12 -6 0 6 12 10_12 r s + .
(au/ax)/((au/ax)z)lfz (au/ay)/<(au/ay)2>1/2

FIG. 10. PDFs of the normalized (a) longitudinal and (b) lateral velocity derivatives fietle=ad s (64 grid
nodes), shown together with a Gaussian distribution.
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FIG. 11. Dissipation spectra at= 0 s (64 grid nodes).

always positive)., is positive or negative, depending on whethigf > |A3| or|A1| < |A3].
Given the randomness of the initial fields, it was expected thatould be positive in
between approximately 50% of the domain. In our calculationw/as positive between
48 and 52% of the domain and no difference was found between the orthogonal and
nonorthogonal domains.

The alignment between the vorticity and the directions of the principal rates of strain
the initial fields was also verified. H,, &, ande; are the eigenvectors associated with the
eigenvalues., A,, andas, the angle); between the vorticity vector and the direction of the
principal rate of strain represented by the eigenvegtir defined by

6 = arccosM. (28)
lwllllel

Because the initial fields were the result of a random process, it was expected that
PDF of#,, 6,, andf; would be identical to the PDF of the angle between a random vect
and a random direction. All the PDFs showed that angles greater thhawes@ more
frequent than in the random case (Fig. 12). However, they did not change with the don
distortion.

3.4. Time Development of Statistical Parameters

The ratioQ, between the Fourier modes of the discretized and of the exact derivat
was introduced in Section 3.2.1. However, a precise error estimation should consider
the shape of the energy spectrum. The paraméterdefined by

_ J - Q’KEK. b dk

2
“o [KREK ok
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FIG. 12. PDFs of the angles between the vorticity and the directions of principal rates of sttaia @fs
(643 grid nodes), shown together with the PDFs of the angles between a random vector and a random direct

measures the error of discretization of derivatives with respect to the Cartesian digctic
at each time step (cf. [4]).

The errore increased with time until = 0.5 (Fig. 13), accompanying the energy transfer
from low to high wave numbers. The error does not increase linearly with the distortic
the domains withw = 15 and 30 display errors 2 and 5% higher than in the orthogona
case, whereas far = 45° it can exceed the undistorted case by up to 1@%ppears
to be correlated with the average accuracy for each wave number, which degrades
increasing grid distortion (Figs. 5 and 6), rather than with the accuracy of some individ
Fourier modes, which was worst far= 15 or 30 (Fig. 4).

Considering the temporal evolution of the turbulence kinetic energy (Fig. 14), the dom.
with 45° of distortion had always the lowest energy. At the end of the simulattoad).8 s)

0.20 020 (b)
0.15 0.15F

w 0.10 0.10f
0.05 0.05F

0.00,

0'000 0.2 0.4 0.6 0.8

t(s)

FIG.13. Temporal evolution of the error of discretization of derivatives with respect to the Cartesian directi
z at each time step. (a) &4rid nodes and (b) 128yrid nodes.




NUMERICAL SIMULATION OF ISOTROPIC TURBULENCE 731

Ex 10° (Jfkg)

FIG. 14. Temporal evolution of the turbulence kinetic energy*(§4d nodes).

its total energy was 1% less than in the orthogonal domain, which had always the higl
energy. The decay in the domain with°1&f distortion was the closest to the orthogonal
domain, with a difference of less than 0.05% at the end of the simulation. This behay
was somehow expected because of the increased lack of conservation introduced b
calculation of the mass fluxes at the cell surfaces (Eqg. (13)) and because of the hi
discretization errors in more distorted domains.

The skewness of the longitudinal velocity derivative, defined by

((3u/3%)%)

S)u/ax = T A /av2\15°
((@u/dx)%)

is a nondimensional measure of enstrophy production and energy transfer due to the
linear interaction and, therefore, a parameter of crucial importance in the simulation
turbulence. Its evolution in the orthogonal domain (Fig. 15) was identical to that report
in Ref. [18]. In all calculations, the skewness required about half of the eddy turnover til
before reaching a plateau of about 0.5. The evolution in the distorted domains could di
up to 3% from that in the orthogonal domain, which we considered acceptable, becau:
was smaller than the differences observed between the three simulations in the orthog
domain with the 62 grid.

0.6

FIG. 15. Temporal evolution of the skewness of the longitudinal velocity derivativesgfd nodes).



732 SILVA LOPES AND PALMA

45r (a) 45

F, Qu/ox

8.9 0.6 08 3'00 0.2 0.4 0.6 0.8

0.4
t(s) t(s)

FIG. 16. Temporal evolution of the flatness (6grid nodes) of the (a) longitudinal and (b) lateral velocity
derivatives.

The flatness of the longitudinal and lateral velocity derivatives,

N (CLT7LE
u/ox — ((3U/8X)2>2’
e _ @u/ay)h
M (aufay)?)?

can provide information on how the vorticity is aligned with the rate of strain [24].

The temporal evolution of the flathess was identical in all domains (Fig. 16). The diffe
ence between the domains was less than 2%, a value also smaller than that observed be
the simulations started with different initial velocity fields in the orthogonal domain.

We noticed, in accordance with Ref. [26], that the flatness of the lateral velocity derivat
(Fig. 16b) was higher than that of the longitudinal derivative (Fig. 16a). However, in the cz
reported by Ref. [26], witlRe, ~ 150, the values are highef, sx = 5.9 andF;y 5y = 8)
than these reported hergy(,,x = 3.6 andF,,,5y = 4.5). The value ofF;,/5x agrees with
the one reported by Ref. [11] f&te, = 40, as in the current study.

At the end of the simulations,= 0.8 s, the turbulent Reynolds dropped to half its initial
value, and the differences between results on different domains were less than 3% (Fig.

150 0.2 0.4 0.6 0.8

FIG. 17. Temporal evolution of the turbulent Reynolds number @dd nodes).
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TABLE Il
Isotropy of the Fields att = 0.8 s

£(z2.0) (uz)/E(u?) (@F)/ X (w}) (@?)/{tr(s?)

64° grid nodes

o 0.351,0.301,0.348 0.345, 0.329, 0.326 2.000
0.300, 0.324,0.376  0.367,0.321, 0.313 2.000
0.317,0.295,0.387 0.353, 0.316, 0.331 2.000

15 0.351,0.301,0.347 0.345,0.328, 0.327 2.000
0.300, 0.324,0.376  0.369, 0.319, 0.313 2.000
0.317,0.296,0.387  0.353, 0.316, 0.332 2.000

30 0.352,0.302,0.346  0.346, 0.326, 0.328 2.000
0.300, 0.326,0.375 0.371,0.314,0.314 2.000
0.317,0.296,0.387 0.354,0.317,0.333 2.000

45 0.354,0.303,0.344 0.349, 0.322,0.329 2.000
0.300, 0.329,0.371  0.379, 0.304, 0.317 2.000
0.317,0.297,0.386  0.358, 0.307, 0.335 2.000

128 grid nodes

o 0.301, 0.320,0.380 0.320, 0.321, 0.359 2.000

15 0.301, 0.320,0.380 0.320, 0.321, 0.359 2.000

30 0.301, 0.320,0.379  0.321, 0.320, 0.360 2.000

45 0.301, 0.320,0.379  0.322,0.318, 0.360 2.000

Note Each line corresponds to one simulation, as in Table I.

3.5. Fields after the Decay

In the previous section we considered the temporal evolution of statistical paramet
here we present some results obtained at the end of the simuldtien3 § s).

Isotropy was first checked in the large and small scales (velocity and vorticity) and
the isotropic relation (27), shown in Table II. The fields at 0.8 s in the nonorthogonal
domains seemed as equally isotropic as the fields in the orthogonal domain. The isotr
relation (27) was always satisfied to the third decimal figure, which did not always occul
t = 0 s (see Table ).

The PDFs of the velocity field were all identical and near Gaussian (Fig. 18), as
known from previous simulations [23]. The pressure PDFs were also very similar and, a

1005' —— Gaussian

w/ <u2>1/2

FIG. 18. PDF of the normalized velocity field at= 0.8 s (64 grid nodes), shown together with a Gaussian
distribution.
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FIG. 19. PDF of the normalized pressure fieldtat 0.8 s (64 grid nodes), shown together with a Gaussian
distribution.

Ref. [15], exponential in the lows and Gaussian in the highs (Fig. 19). This was reprodu
in all domains.

The PDFs of the longitudinal and lateral velocity derivatives (Fig. 20) in the differer
domains were also in agreement with each other. Some scatter was visible in the t
attributable to the limited sample size.

There was also good agreement between the dissipation spectra, regardless of the dc
distortion (Fig. 21). The spectra calculated in the grid with Bddes was similar, but with
a lower cutoff.

Kerr [11] found and Vincent and Meneguzzi [26] confirmed that, in general, the large
rate of strain was compressive and perpendicular to the vorticity, the smaller stretching:
aligned with the vorticity, and the larger stretching was perpendicular to the vorticity. To s
whether the different domain distortions altered these correlations, we studied the PDF
the angle®;, defined in (28). In absolute valug, was the largest principal rate of strain in
approximately 77% of the domain points, for all domain distortions and with eithieni64
128 grids. This value was higher than the 67% reported in Ref. [26], despite their higt
Re (~150). The PDFs of; showed that the domain distortion did not affect the alignmen
between the vorticity and the rate of strain (Fig. 22). In case ofiHRDF, angles greater
than 65 were more frequent than in the random distribution (Fig. 22a), whil@itiDF
indicated that angles inferior to 4%vere more probable (Fig. 22b). The PDF, opposed

10°F

Gaussian (a) 10% (b)
10"
10°E
10°F

104k

-5 é : 1 J -5 l‘ L [ 1
1942 -6 0 6 2 %2 -6 0 6 12

(Ou/0x) /{(Ou/9x)*y"* (Qu/dy)/{(Qu/dy)>y"”?

FIG. 20. PDFs of the normalized (a) longitudinal and (b) lateral velocity derivatives field=a0.8 s
(642 grid nodes), shown together with a Gaussian distribution.
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FIG. 21. Dissipation spectra at= 0.8 s (128 grid nodes).

to thed; andf, PDF, changed little sinde= 0 s (Fig. 12¢) and showed that angles greate
than 60 were more frequent than in the random case (Fig. 22c).

Finally, a comparison of one component of the vorticity field at the end of the simulati
was included (Fig. 23). Even if the domain distortion (Fig. 13) could increase almost thi
times the error of spatial discretization of derivatives in the domain with45°, Fig. 23
and the foregoing analysis showed that the same flow was simulated on the various dom

25¢ (a) —— Random

PDF

0'00 30 60 90

8,(°)

FIG.22. PDFs of the angles between the vorticity and the directions of the principal rates of strair0e s
(64° grid nodes), shown together with the PDFs of the angle between a random vector and a random directic
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FIG. 23. w, vorticity field in axz plane at = 0.8 s (64 grid nodes). (a)x = 0°; (b) « = 15°; (¢) & = 30’;
(d) o = 45.

4. CONCLUSIONS

The purpose of this work was to study the influence of a nonorthogonal grid in the num
ical simulation, based on the finite-volume methodology, of decaying isotropic turbulen:
Four different domains—distinct in the angle between the computational directol
the physical directior—were considered: 0 (orthogonal domain, used as reference), !
30, and 45.

The simulations started from random velocity fields, identical for all grid distortions ar
generated with imposed correlations and spectra. It was observed that, as opposed to
occurs with a Cartesian grid, with a nonorthogonal grid the Fourier modes of the discreti:
derivatives could be amplified or have inverted phase, relatively to the modes of the e
derivative. However, the average accuracy for each wave number degrades slowly \
increasing grid distortion and seems to be a better indicator of the spatial discretiza
error than the accuracy of individual Fourier modes.

During the turbulence decay the fields were identical, regardless of the grid distorti
The differences in the skewness of the longitudinal velocity derivaiivéx (related to the
energy transfer) and in the flatness of the longitudinal and lateral velocity derivatidg
(related to the alignment of vorticity and rate of strain) were less than 3%.

At the end of the simulatiort (= 0.8 s), the difference in the turbulence kinetic energy
was 1%. The distortion of the domain affected neither the isotropy of the flow nor tl
alignment between the vorticity and the rate of strain. In general, the vorticity was align
with the second principal rate of strain and was perpendicular to the others.

As a general conclusion, the grid nonorthogonality does not seem to affect the numet
simulation of decaying isotropic turbulence and the methodology presented here may
extended to more complex problems and geometries.

APPENDIX

The set of equations defining the third-order Runge—Kutta scheme with four subste
Runge—Kutta (4,3), is
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* 19 . . 205

¢n+:1%_g = (Pn —+ §6At . f(tn’ (t)n)’ f*= f(tn+é_g, ¢n+%) — 274315 (tn’ ¢n)’
* * 27 . o * 243 ..

¢n+% = ¢n+%+1_9At f ) f =f<tn+%’¢n+%) _@f :

¢n+% =¢n+%+§At.f ; f :f(tn+%v¢n+%)_§f :

n+3

1
¢n+1 — ¢** + ZAt . f***
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